# CONFORMATION OF RING A IN TRITERPENOID KETONES. CARBON-13 CHEMICAL SHIFTS AND SPIN-LATTICE RELAXATION TIMES OF LUPANE AND 18 $\alpha$-OLEANANE DERIVATIVES* 

Miloš Buděšínskýa ${ }^{a}$ and Jiǐí Klinot ${ }^{b}$<br>${ }^{\text {a }}$ Institute of Organic Chemistry and Biochemistry, Czechoslovak Academy of Sciences, 16610 Prague 6 and<br>${ }^{\text {b }}$ Department of Organic Chemistry, Charles University, 12840 Prague 2

Received September 19, 1988

Accepted October 4, 1988


#### Abstract

${ }^{13} \mathrm{C}$ NMR spectra of sixteen lupane and $19 \beta, 28$-epoxy-18 $\alpha$-oleanane triterpenoids $I-X V I$ were measured and a complete structural assignment of chemical shifts was made. For most compounds also the carbon spin-lattice relaxation times $T_{1}$ were obtained. Characteristic differences in chemical shifts of some carbon atom signals were found between $2 \alpha$-methyl-3-oxo and $2 \alpha$ --methyl-1-oxo derivatives $I I, V$ and $V I I I$ with chair conformation of the ring $A$ on the one hand and their $2 \beta$-isomers III, VI and $I X$ (boat form) on the other. Using these 2 -methyl ketones as models, the chair-boat population in allobetulone (I), 3-oxo-28-lupanenitrile (IV) and 1-oxo derivative $I^{\prime} I I$ was determined. The results agree well with the data obtained by other physical methods.


Within the framework of our investigation on conformation of ring $A$ in triterpenoid and 4,4-dimethylsteroid compounds we have shown previously ${ }^{1-3}$ that 3 -oxo derivatives of pentacyclic triterpenoids with $4 \alpha, 4 \beta, 8 \beta$ and $10 \beta$-methyl groups (e.g. $I, I V, X V I$ etc.) exist as an equilibrium mixture of chair and boat conformations of the ring A. The same conclusion was obtained by Tsuda and coworkers ${ }^{4,5}$ on the basis of CD spectra. The most convincing evidence for this conformational equilibrium has come from IR spectra of $2 \alpha$ - and $2 \beta$-deutero derivatives of allobetulone $(I)$ in the carbon-deuterium stretching vibration region ${ }^{1}$. The population of the boat form has been estimated to be about $40 \pm 10 \%$ from ${ }^{1} \mathrm{H}$ NMR spectra (vicinal coupling constants of protons in positions 1 and 2 ; see ref. ${ }^{2}$ ), dipole moments ${ }^{3}$, CD spectra ${ }^{3}$ and simulation of conformational equilibrium by isomerization of $2 \alpha$ and $2 \beta$-substituted 3 -ketones ${ }^{3}$. On the other hand, the vicinal coupling constants of protons in positions 2 and 3 in the 1 -ketone VII (ref. ${ }^{2}$ ), as well as isomerisation of its $2 \alpha$ - and $2 \beta$-substituted derivatives ${ }^{6}$ led to the conclusion that in 1 -oxo derivatives the ring A exists predominantly in the chair form. The mentioned results are based on

* Part XCI in the series Triterpenes; Part XC: Collect. Czech. Chem. Commun. 54, 1036 (1989).
using $2 \alpha$-methyl ketones $I I, V$ and $V I I I$ as models for the chair form and $2 \beta$-methyl ketones $I I I, V I$ and $I X$ for the boat form.


I, $R^{\prime}=R^{2}=H$
II, $R^{\prime}=\mathrm{CH}_{3} ; \mathrm{R}^{2}=\mathrm{H}$
III, $\mathrm{R}^{\prime}=\mathrm{H}_{;} \mathrm{R}^{2}=\mathrm{CH}_{3}$

$\begin{aligned} \text { VII, } R & =R^{2}=H \\ \text { VII, }, R^{\prime} & =C_{3} R^{2}=H \\ \text { IX, } R^{\prime} & =H_{i} R^{2}=C_{3}\end{aligned}$

$X I I, \mathrm{R}=\mathrm{H}$
$X I I I, \mathrm{R}=\mathrm{CH}_{3}$

$N, R^{1}=R^{2}=H$
$V, R^{\prime}=\mathrm{CH}_{3} ; \mathrm{R}^{2}=\mathrm{H}$
Vi, $\mathrm{R}=\mathrm{H}, \mathrm{R}^{2}=\mathrm{CH}_{3}$

$X, \mathrm{R}=\mathrm{H}$
$X I, \mathrm{R}=\mathrm{CH}_{3}$

$X I V, \mathrm{R}=\mathrm{H}$
$X V, \mathrm{R}=\mathrm{CH}_{3}$

Since ${ }^{13} \mathrm{C}$ NMR spectra are very sensitive to conformational effects ${ }^{7}$, it was of interest to study how the conformation of ring $A$ is reflected in the chemical shifts of carbon atoms and whether these shifts could be used for estimation of conformer
population in chair-boat equilibria. Our present communication concerns the results obtained from the ${ }^{13} \mathrm{C}$ NMR spectra of ketones $I-I X$ and $X V I$, derived from 19ß,28-epoxy-18 $\alpha$-oleanane (XIV), 28-lupanenitrile and lupane (XVII). For comparison and easier assignment of carbon signals we also measured ${ }^{13} \mathrm{C}$ NMR spectra of several other compounds $(X-X V)$ and determined the spin-lattice relaxation times $T_{1}$ for most compounds.

## EXPERIMENTAL

The preparation of all studied compounds was already described: $I$ and $X$ in ref. ${ }^{8}, I I, M I, X I$ and $X V$ in ref. $.^{9}, I V-V I, X I I$ and $X I I I$ in ref. ${ }^{10}, V I I$ in ref. ${ }^{11}, V I I I$ and $I X$ in ref. ${ }^{6}, X I V$ in ref. ${ }^{12}$ and $X V I$ in ref. ${ }^{13}$.

The ${ }^{13} \mathrm{C}$ NMR spectra were measured on a Varian XL-200 FT NMR spectrometer at 50.3 MHz in $\mathrm{CDCl}_{3}$ solutions (about 50 mg of compound in 0.4 ml of $\mathrm{CDCl}_{3}$ ) with tetramethylsilane as internal standard. Chemical shifts were determined from proton noise-decoupled spectra (typical experimental conditions: spectral width 12 kHz , acquisition time 1.333 s , data points 32 k , pulse width $5 \mu \mathrm{~s}$ (flip angle $50^{\circ}$ ), repetition time $2 \mathrm{~s}, \mathrm{c} .200$ transients, exponential multiplication of FID's with line broadening factor 1 Hz ). For signal assignment the attached proton test spectra (APT) ${ }^{14}$ were measured under similar conditions ( $J$-modulation delay time 7 ms ). ${ }^{13} \mathrm{C}$ relaxation times $T_{1}$ were measured at $23^{\circ} \mathrm{C}$ using the inversion recovery technique (pulse sequence $\left(180^{\circ}-t-90^{\circ}-A_{t}-T\right)_{n}$; exp. conditions: spectral width 4.4 kHz , acquisition time $A_{t}$ 0.92 s , zero filling to 8 k data points, variable relaxation delay time $t$ - seven values between 0.05 s and 40 s , equilibrium delay time $T-40 \mathrm{~s}, 32$ transients for each $t$ value, processing with line broadening factor 1 Hz ); the automatic numerical evaluation was done using the AUTOT1 program (standard part of Varian XL-200 software version H1Z). For the measurements of $T_{1}$ 's we used the same solutions as for the above-mentioned NMR experiments; prior to the measurements oxygen was removed from the solution ty passage of nitrogen for 2 minutes.

## RESULTS AND DISCUSSION

The chemical shifts and relaxation times $T_{1}$ of carbon atoms in compounds $I-X V I$ are summarized in Table I. In assigning the signals we considered the conformation of ring $A$ in the individual compounds, which was either known or followed from the rules for substituent effects on the ring A conformation ${ }^{9,15}$. The chair form in the unsubstituted derivative $X I V$ and in the $3 \beta$-hydroxy derivatives $X-X I I I$ is obvious ${ }^{4}$, in the $2 \alpha$-methyl-3 3 -ols $X I$ and $X I I I$ it has been confirmed by ${ }^{1} \mathrm{H}$ NMR spectra ${ }^{9}, 10$. The evidence of the chair-boat equilibrium in 3-ketones $I, I V$ and $X V I$ and of predominating chair form in the 1 -ketone VII has already been mentioned above. The presence of $2 \alpha$-methyl ketones $I I, V$ and $V I I I$ in the chair and $2 \beta$-methyl ketones $I I I, V I$ and $I X$ in the boat form was derived from vicinal coupling constants of the ring A protons ${ }^{2}$. In the $2 \beta$-methyl derivative $X V$ the boat form should highly predominate because in analogous $2 \beta$-hydroxy and $2 \beta$-acetoxy derivatives the ratio of the chair and the boat conformers is about $1: 1$ (ref. ${ }^{15}$ ) and because a $2 \beta$-methyl group destabilises the chair form much more than does a hydroxy or acetoxy group ${ }^{9}$.

Carbon-13 chemical shifts ( $\delta$ ) and spin-lattice relaxation times $T_{1}$ ( s ; in parentheses)

| Carbon | $I$ | II | III | IV | $V$ | $V I$ | VII | VIII |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| C-1 | 39.78 (0.5) | 49.89 (0.4) | $51 \cdot 10(0.5)$ | 39.57 (0.6) | $49.52(0.4)$ | 50.90 (0.4) | $217 \cdot 35\left(-{ }^{\text {a }}\right.$ ) | 218.63 (-a) |
| C-2 | 34.05 (0.8) | $36 \cdot 48(0 \cdot 9)$ | $35 \cdot 79$ (1.0) | 34.09 (1.0) | $36 \cdot 44$ (0.8) | 35.77 (1.0) | 35.39 (0.6) | 35.81 (0.9) |
| C-3 | $218.04\left(-{ }^{\text {a }}\right.$ ) | $218.00\left(-^{a}\right)$ | $220.77\left(-^{\text {a }}\right.$ ) | $217.74\left(\right.$ - $^{\text {a }}$ ) | 217.95 $\left(-^{\text {a }}\right.$ ) | $220.62\left(-^{\text {a }}\right.$ ) | 42.96 (0.5) | $54.27(0.4)$ |
| C-4 | 47.26 (9.3) | 48.11 (7.7) | 46.39 (9.4) | $47 \cdot 30(6 \cdot 8)$ | 48.11 (7.9) | $46 \cdot 42$ (7.1) | $33.26(1.2)^{b}$ | 33.97 (5.5) |
| C-5 | $54.92(1.0)$ | $57.37(0.9)$ | 52.46 (0.8) | 54.92 (0.8) | 57.22 (0.7) | 52.31 (0.5) | 57.68 (1.1) | 59.56 (1.0) |
| C-6 | 19.59 (0.8) | $19.26(0.4)$ | 20.06 (0.3) | 19.59 (0.5) | $19 \cdot 30(0 \cdot 3)$ | 20.06 (0.4) | $19 \cdot 14$ (0.5) | 19.18 (0.7) |
| C-7 | 33.13 (0.6) | 33.65 (0.4) | $32 \cdot 59(0 \cdot 4)$ | 33.76 (0.5) | $34 \cdot 24(0.4)$ | 33.19 (0.4) | 33.33 (1.2) ${ }^{\text {b }}$ | 33.33 (0.4) |
| C-8 | 40.49 (6.5) | 40.63 (5.9) | 40.49 (6.5) | $40 \cdot 56$ (5.9) | $40 \cdot 66$ (5.4) | $40 \cdot 59$ (5.4) | $40 \cdot 62$ (10.2) | 40.54 (9.7) |
| C-9 | 50.36 (1.0) | 50.57 (0.7) | $50 \cdot 49(0.9)$ | $49 \cdot 47$ (1-1) | 49.66 (0.5) | $49.62(1.7)^{\text {b }}$ | 42.18(1.1) | $42 \cdot 27$ (1-1) |
| C-10 | 36.92 (7.9) | $37 \cdot 50(7 \cdot 2)$ | 36.84 (5.2) | 36.86 (6.9) | $37 \cdot 42(4 \cdot 6)$ | 36.73 (5.2) | 52.58 (11.4) | 53.22 (9.3) |
| C-11 | $21.48(0.4)$ | $21 \cdot 19(0 \cdot 4)$ | 22.01 (0.4) | $21 \cdot 19$ (0.4) | 20.88 (0.4) | 21.78 (0.4) | 23.94 (0.7) | 24.03 (0.4) |
| C-12 | $26.39(0.4)^{\text {b }}$ | $26.32(0.4)^{b}$ | $26.52(0.4)$ | 26.35 (0.4) | 26.26 (0.4) | 26.53 (0.5) | $26.21(0.5)^{c}$ | $26.17(0.5)^{c}$ |
| C-13 | 34.22 (1.2) | $34 \cdot 10(0 \cdot 8)$ | 34.44 (0.5) | 41.21 (0.8) | $41 \cdot 10$ (1.0) | 41.44 (1.0) | $34.57(0.9)$ | $34 \cdot 62$ (1.1) |
| C-14 | $40 \cdot 72$ (8.1) | 40.77 (8.4) | 40.69 (5.7) | 42.63 (8.6) | $42 \cdot 66$ (7.1) | 42.59 (5.8) | 41.11 (8.4) | 41.17 (7.5) |
| C-15 | $26.39(0.4)^{\text {b }}$ | $26.37(0.4)^{b}$ | 26.41 (0.5) | 28.94 (0.4) | 28.90 (0.3) | $28.94(0.4)$ | $26.43(0.5)^{c}$ | $26.45(0.5)^{c}$ |
| C-16 | 36.68 (0.6) | 36.69 (0.4) | 36.72 (1.1) | 31.06 (0.5) | $31.09(0.4)$ | 31.03 (0.3) | 36.73 (0.6) | 36.73 (0.5) |
| C-17 | $36 \cdot 23$ (6.3) | 36.22 (5.2) | 36.25 (5.4) | 49.56 (3.5) | 49.73 (6.2) | $49.62(1.7)^{b}$ | 36.25 (7.9) | 36.24 (7.0) |
| C-18 | 46.73 (1.1) | 46.76 (0.7) | 46.74 (0.9) | 48.77 (0.7) | 48.79 (1.0) | 48.75 (0.8) | 46.68 (1.2) | 46.69 (0.8) |
| C-19 | 87.84 (1.0) | 87.85 (0.8) | 87.84 (0.8) | $45 \cdot 13$ (0.9) | 45.16 (0.9) | $45.11(0.8)$ | $87 \cdot 88(1 \cdot 3)$ | 87.89 (0.5) |
| C-20 | 41.43 (7.7) | 41.40 (5.8) | $41 \cdot 44$ (6.0) | 29.29 (0.6) | 29.29 (0.6) | 29.30 (0.6) | 41.44 (6.6) | 41.45 (5.8) |
| C-21 | 32.65 (0.2) | 32.66 (0.4) | $32.68(0.3)$ | 22.21 (0.5) | 22.20 (0.8) | 22.21 (0.5) | 32.72 (0.5) | 32.72 (0.5) |
| C-22 | 26.19 (0.5) | 26.21 (0.5) | $26.20(0.4)$ | 36.26 (0.5) | 36.26 (0.4) | 36.27 (0.4) | $26.28(0.5)^{c}$ | $26.29(0.3)^{c}$ |
| C-23 | 26.71 (0.7) | 25.19 (0.8) | 29.41 (0.6) | $26.58(0.6)$ | 25.20 (0.5) | 29.39 (0.6) | 31.90 (0.6) | 32.12 (0.6) |
| C-24 | 20.96 (1-1) | 21.78 (1.4) | 19.51 (1.0) | 21.06 (1.3) | 21.81 (1.3) | $19 \cdot 50(0 \cdot 8)$ | 22.66 (0.9) | 22.35 (1.0) |
| C-25 | 16.31 (0.9) | 16.45 (1.5) | $15.50(0.9)$ | $15.90(1.5)^{c}$ | $16 \cdot 10(1 \cdot 9){ }^{b}$ | $15.44(1 \cdot 2)^{\text {b,c }}$ | 15.67 (2.9) ${ }^{\text {d }}$ | $16.02(3.0)^{\text {d }}$ |
| C-26 | $15 \cdot 48$ (4.1) | $15 \cdot 82(2 \cdot 5)$ | 15.06 (1.4) | $15.82(1.6)^{c}$ | $16.10(1.9)^{b}$ | $15 \cdot 37(1 \cdot 2)^{\text {b,c }}$ | 16.44 (2.8) ${ }^{\text {d }}$ | $16.48(3.0)^{d}$ |
| C-27 | 13.42 (4.5) | 13.40 (2.5) | 13.43 (1.9) | 14.67 (2.8) | 14.66 (3.1) | 14.68 (2.4) | 13.43 (2.3) | 13.45 (2.0) |
| C-28 | 71.20 (0.4) | 71.20 (0.4) | 71.22 (0.1) | $123.62\left(-^{a}\right)$ | $123.62\left(-^{a}\right)$ | $123.61\left(-^{a}\right)$ | 71.29 (0.6) | 71.28 (0.3) |
| C-29 | $24.52(0.5)$ | $24.51(0.8)$ | 24.54 (0.5) | 15.00 (1.4) | 14.99 (1.7) | 15.01 (1.4) | 24.52 (1.0) | 24.52 (0.6) |
| C-30 | 28.78 (0.6) | 28.78 (0.5) | 28.79 (0.4) | 22.68 (0.8) | 22.68 (0.8) | 22.67 (0.9) | $28.80(0.7)$ | 28.79 (0.5) |
| C-31 ${ }^{\text {f }}$ | - | 15.64 (1.3) | 18.83 (0.4) | - | $15 \cdot 59(1 \cdot 1)$ | 18.59 (0.4) | - | $15.07(1 \cdot 2)^{\text {d }}$ |

Table I (Continued)

| Carbon | IX | $X^{a}$ | $X 1^{a}$ | $X I I^{a}$ | $X I I I^{a}$ | XIV | XV | $X V I$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| C-1 | $218.87\left(-{ }^{\text {a }}\right.$ ) | 38.92 | 48.59 | 38.74 | 48.43 | 40.47 (0.6) | 45.06 (0.4) | 39.57 (0.7) |
| C-2 | 38.64 (1.2) | 27.40 | $30 \cdot 62$ | 27.38 | 30.52 | 18.70 (0.7) | 26.05 (0.5) | $34 \cdot 13$ (1.0) |
| C-3 | 44.22 (0.5) | 78.91 | 84.75 | 78.94 | 84.69 | 42.10 (0.5) | 49.93 (1.0) ${ }^{\text {b }}$ | $218.01\left(-{ }^{\text {a }}\right.$ ) |
| C-4 | 31.91 (7.6) | 38.87 | 39.04 | 38.86 | 39.00 | 33.29 (3.0) ${ }^{\text {b }}$ | 32.42 (6.2) | 47.31 (10.7) |
| C-5 | 50.81 (1.0) | $55 \cdot 48$ | 55.84 | $55 \cdot 30$ | 55.62 | 56.59 (1.2) | 51.64 (1.4) ${ }^{\text {c }}$ | 54.88 (1.0) |
| C-6 | 19.24 (0.7) | 18.25 | 18.47 | 18.28 | 18.47 | 18.57.(0.6) | 19.78 (0.5) | 19.68 (0.7) |
| C-7 | 33.40 (0.4) | 33.90 | 33.89 | 34.47 | 34.45 | 33.87 (0.9) | 33.16 (0.4) | 33.65 (0.8) |
| C-8 | 41.39 (8.6) | $40.60^{\text {c }}$ | $40 \cdot 62^{\text {c }}$ | $40 \cdot 63$ | $40 \cdot 62$ | $40.80(10 \cdot 3)^{\text {c }}$ | 40.86 (9.4) ${ }^{\text {d }}$ | $40 \cdot 80$ (8.9) |
| C-9 | 43.28 (0.6) | 51.07 | 51.02 | $50 \cdot 14$ | 50.07 | 51.15 (1-1) | $49.98(1.0)^{\text {b }} \boldsymbol{c}$ | 49.43 (1.1) |
| C-10 | 49.73 (8.1) | 37.24 | 37.50 | $37 \cdot 17$ | 37.37 | 37.55 (9.9). | 38.01 (5.6) | 36.83 (6.1) |
| C-11 | 22.96 (0.4) | 20.98 | 20.99 | 20.68 | 20.66 | 20.86 (0.7) | 21.78 (0.7) | 21.46 (0.6) |
| C-12 | 26.12 (0.3) ${ }^{\text {c }}$ | 26.44 | $26.41{ }^{\text {d }}$ | 26.38 | 26.37 | 26.53 (0.6) | 26.74 (0.4) | 26.81 (0.6) |
| C-13 | 34.20 (0.9) | $34 \cdot 14$ | 34.14 | 41.15 | $41 \cdot 13$ | 34.10 (1.0) | 34.46 (1.3) | 37.91 (1.5) |
| C-14 | 41.09 (9.9) | $40 \cdot 70^{\text {c }}$ | $40 \cdot 72^{\text {c }}$ | $42 \cdot 59$ | $42 \cdot 58$ | 40.73 (9.1) ${ }^{\text {c }}$ | 40.73 (7.9) ${ }^{\text {d }}$ | $43.08(8.0)^{\text {b,c }}$ |
| C-15 | 26.41 (0.5) ${ }^{\text {c }}$ | 26.44 | $26.44^{\text {d }}$ | 28.97 | 28.92 | 26.38 (0.6) | 26.44 (0.5) | 27.31 (0.5) |
| C-16 | 36.71 (0.5) | 36.74 | 36.74 | 31.14 | $31 \cdot 12$ | 36.77 (0.6) | 36.77 (0.6) | 35.46 (0.7) |
| C-17 | $36 \cdot 23$ (5.1) | 36.25 | 36.25 | 49.59 | $49 \cdot 55$ | $36 \cdot 25$ (6.2) | 36.25 (5.7) | 43.13 (8.0) ${ }^{\text {b,c }}$ |
| C-18 | 46.65 (0.9) | $46 \cdot 82$ | $46 \cdot 82$ | 48.86 | 48.82 | 46.85 (1.3) | 46.79 (1-2) | 47.55 (1.1) |
| C-19 | $87 \cdot 81(1 \cdot 1)$ | 87.90 | 87.91 | $45 \cdot 16$ | $45 \cdot 15$ | 87.92 (1.3) | 87.88 (1.2) | 44.65 (1.1) |
| C-20 | 41.49 (9.2) | 41.46 | 41.46 | 29.30 | 29.28 | 41.49 (6.9) | 41.48 (5.3) | 29.38 (0.9) |
| C-21 | 32.72 (0.5) | 32.70 | 32.71 | 22.22 | 22.19 | 32.73 (0.6) | 32.73 (0.6) | 21.92 (0.7) |
| C-22 | $26.28(0.5)^{\text {c }}$ | 26.26 | 26.26 | $36 \cdot 32$ | 36.28 | 26.30 (0.5) | 26.28 (0.5) | 40.37 (0.6) |
| C-23 | 31.13 (0.4) | 27.98 | 28.36 | 28.01 | 28.38 | $33.36(3.0)^{\text {b }}$ | 31.02 (0.4) | 26.65 (0.6) |
| C-24 | $25.92(0.5)$ | 15.38 | $16 \cdot 17$ | 15.38 | 16.18 | 21.55 (1.1) | 22.19 (1.0) | 21.07 (1.4) |
| C-25 | $15 \cdot 87(1.3)^{\text {b,d }}$ | 16.48 | 17.28 | $16 \cdot 10^{c}$ | 16.88 | 16.44 (1.4) | $24.78(1.1)^{e}$ | $15.90(1.8){ }^{\text {d }}$ |
| C-26 | 16.61 (3.4) ${ }^{\text {d }}$ | 15.70 | 15.71 | $15.99^{\text {c }}$ | 15.97 | 15.76 (4.0) | $15 \cdot 36$ (2.8) | $15 \cdot 81(2 \cdot 9)^{\text {d }}$ |
| C-27 | 13.25 (2.8) | 13.50 | 13.50 | 14.75 | 14.73 | 13.51 (3.3) | 13.45 (3.3) | 14.36 (3.9) |
| C-28 | 71.27 (0.4) | 71.24 | 71.25 | 123.73 | $123 \cdot 68$ | 71.27 (0.5) | 71.28 (0.4) | 18.07 (1.8) |
| C-29 | 24.50 (0.6) | 24.54 | 24.54 | 15.01 | 14.99 | 24.55 (0.9) | 24.55 (0.9) | $15 \cdot 15$ (1.7) |
| C-20 | 28.77 (0.5) | 28.80 | 28.80 | 22.70 | 22.68 | 28.81 (0.6) | 28.81 (0.6) | 22.99 (0.7) |
| C-31 ${ }^{\text {f }}$ | $15 \cdot 87(1 \cdot 3)^{\text {b,d }}$ | - | 19.41 | - | 19.41 | - | $23.25(0.6)^{e}$ | - |

${ }^{a}$ Relaxation times not measured; ${ }^{b}$ uncertain values of $T_{1}$ due to the total or partial overlap of the signals; ${ }^{c, d, e}$ signals with the same symbol mav, he intarahannad. $f$ farhion atam of C. $\boldsymbol{n}$ methul aroun

Structural Assignment of ${ }^{13} \mathrm{C}$ Chemical Shifts
The first step toward complete assignment of the ${ }^{13} \mathrm{C}$ NMR signals was their classification according to the number of directly bonded hydrogen atoms. For this we used the attached proton test spectra ${ }^{14}$ as well as the relaxation times $T_{1}$. Although the potentialities of using relaxation times of carbon atoms $\left(T_{1}\right)$ for assignment and investigation of dynamic processes are well known, in the region of triterpenes they have been utilized only scarcely ${ }^{16}$. The experimental error of $T_{1}$ values given in Table I varies (for most of the proton-bearing carbon atoms the error is smaller than $10 \%$ whereas for some quaternary carbon atoms it is as high as $25 \%$ ) and in some cases of carbons with very similar or identical chemical shifts it cannot be determined with certainty; however, the obtained values of $T_{1}$ afforded valuable supplementary information to the APT spectra. In all the measured compounds $I-I X, X I V-X V I$ the quaternary carbon atoms have long relaxation times ( $T_{1} \geq 5 \mathrm{~s}$ ) enabling their safe distinction from the methylene carbon atoms (with $T_{1} 0.3-0.8 \mathrm{~s}$ ). The values of $T_{1}$ for methine carbon atoms are close to 1 s whereas those of methyl carbons vary considerably, depending on the position of the methyl on the triterpene skeleton (for a more detailed discússion vide infra).

$X V I, R^{\prime}+\mathrm{R}^{2}=0 ; \mathrm{R}^{3}=H$
$X V H, \mathrm{R}^{\prime}=\mathrm{R}^{2}=\mathrm{R}^{3}=\mathrm{H}$
$X V I I, \mathrm{R}^{\prime}=\mathrm{R}^{3}=\mathrm{H} ; \mathrm{R}^{2}=\mathrm{OH}$
$X I X, \mathrm{R}^{2}+\mathrm{R}^{2}=\mathrm{O} ; \mathrm{R}^{3}=\mathrm{OH}$

$X x, \mathrm{R}=\mathrm{CH}_{3}$
$X X I, \mathrm{R}=\mathrm{COOH}$


XXII

Our structural assignment of signals to the individual carbon atoms was based on the published data for a series of lupane derivatives ${ }^{17-23}$, particularly for lupane ${ }^{17.18}$ $(X V I I), 3 \beta$-lupanol ${ }^{18.19}(X V I I I)$, lupeol ${ }^{18,20}$ and 20(29)-lupen-3-one ${ }^{18,21-23}(X X)$. The carbon atoms in the rings $D$ and $E$ in derivatives of $19 \beta, 28$-epoxy- $18 \alpha$-oleanane (XIV) were assigned on the basis of comparison with other compounds of this skeleton ${ }^{24.25}$; in 28-lupanenitrile derivatives we utilized the known effect of the cyano group ${ }^{26}$.

In general, the signals were assigned so as to make self-consistent the differences between chemical shifts due to structural changes in the ring A on the one hand and in the ring E on the other. Three series of compounds were compared: 19ß,28-epoxy--18-oleanane ( $I-I I I, X, X I$ and $X I V$ ), 28-lupanenitrile ( $I V-V I, X I I$ and $X I I I$ ) and lupane ( $X I I-X V I I I$ ) derivatives. In all the compared series the shifts induced by the same structural change agreed well. So, e.g. the shifts due to the $2 \alpha$-methyl in two sets of $3 \beta$-hydroxy derivatives $(X, X I$ and $X I I, X I I I)$ for all carbon atoms differ less than 0.1 ppm : mean values of these shifts are given in Fig. 1. The $2 \alpha$-methyl group affects only the carbon atoms of ring A and the C-6 and C-9 atoms whereas the effect on the more distant carbon atoms is negligibly small (order of magnitude of hundredths ppm. i.e. within the limits of experimental error). The carbon atoms of both axial methyl groups on the ring $\mathrm{A}(\mathrm{C}-24$ and $\mathrm{C}-25)$, which are placed symmetrically relative to $\mathrm{C}-2$, exhibit the same downfield shift $(+0.8 \mathrm{ppm})$. This value is comparable with the shift of the $10 \beta$-methyl, induced by $2 \alpha, 4 \alpha$ or $6 \alpha$-equatorial methyl groups in $3 \beta$-hydroxy and 3 -oxo steroids $(0.9-1 \cdot 1 \mathrm{ppm}$ as follows from the data in $\mathrm{refs}^{27-30}$ ).

The assignment of C-25 and C-26 carbon atoms in the lupane compounds $I V, V I$, $X I I$ and $X V I$ is difficult because their chemical shifts differ only very little ( $\leqq 0.1 \mathrm{ppm}$ ). We prefer to ascribe the lowfield signal to carbon $\mathrm{C}-25$ : this leads to a better accord with analogous derivatives of the $19 \beta, 28$-epoxy-18 $\alpha$-oleanane series ( $I, I I I, X$ and $X I$ ). Our chemical shifts for 3-lupanone ( $X V I$ ) agree well with those reported by Ayer and coworkers ${ }^{19}$, except for $C-22\left(\delta 40.47 \mathrm{vs} \delta 39 \cdot 6\right.$ in ref. $\left.{ }^{19}\right)$ and assignment of the C-2 and C-7 carbon atoms (our assignment is consistent with that for 20(29)-lupen-


Fig. 1
Substituent effect of $2 \alpha$-methyl group on ${ }^{13} \mathrm{C}$ chemical shifts in $3 \beta$-hydroxy derivatives $X I$ and $X I I I$ (for the other carbon atoms $<0 \cdot 1 \mathrm{ppm}$ - not shown)
-3-one $(X X)$ in refs $\left.{ }^{18.21-23}\right)$. In the case of 1 -oxo derivatives $V I I-I X$ and the 2-methyl derivative $X V$ we had in hand only one series of compounds for which we found no analogy in the literature. Therefore, the assignment is less dependable, particularly for the atoms C-25, C-26 and C-31 (the methyl carbon on C-2) which have similar chemical shifts.

The relaxation times $T_{1}$ of the methyl carbon atoms are also worth notice. The carbon atoms of geminal methyl groups (C-29 and C-30 in the 19ß,29-epoxy-18 $\alpha$ --oleanane derivatives and C-23 and C-24 in all the studied compounds) have shorter $T_{1}$ than other skeletal methyl groups. The same effect has also been observed ${ }^{16}$ recently for the C-29 and C-30 atoms in friedelin (D:A-friedooleanan-3-one). Of the pair of C-23, C-24 methyl carbon atoms, the C-23 carbon has invariably shorter $T_{1}(\sim 0.5 \mathrm{~s})$ than the C-24 one ( $\left.\sim 1 \mathrm{~s}\right)$. The longest times $T_{1}$ were observed for methyl carbon atoms in the middle of the skeleton (C-26 and C-27). In all the lupane derivatives studied, one of the methyl carbon atoms in the isopropyl group (C-30 at $\delta \sim 23$ ) has shorter $T_{1}$ than the other one (C-29 at $\delta \sim 15$ ). Interestingly, the 2-methyl carbon atom (C-31) in $2 \beta$-methyl-3-ketones $I I I$ and $V I$ shows markedly shorter $T_{1}(0.4 \mathrm{~s})$ than in the $2 \alpha$-isomers $I$ and $V(\sim 1.2 \mathrm{~s})$. This may indicate that the internal rotation of the equatorial methyl group on $\mathrm{C}-2$ is faster in the chair ( $2 \alpha$-isomer) than in the boat ( $2 \beta$-isomer).

## "C Chemical Shifts and Conformation of Ring A

Comparison of data in Table 1 for $2 \beta$-methyl-3-ketones $I I I$ and $V I$ (boat form of ring A) and for $2 \alpha$-methyl-3-ketones $I I$ and $V$ (chair form) shows that the conformation of ring A affects considerably chemical shifts of some carbon atoms. Not considering the atoms $C-1, C-2$ and $C-3$, where the large substituent effect of the 2 -methyl group ( $\alpha$ - and $\beta$-effects: see Fig. 1) may overbalance the effects due to conformation change of ring A, we observed significant differences for skeletal carbon atoms C-4. C-5, C-6, C-7, C-11 and methyl carbon atoms C-23, C-24 and C-26. The most pronounced is the upfield shift of C-5 ( -4.9 ppm ) and the downfield shift of C-23 ( -4.2 ppm ) in the boat form (III,VI) compared with the chair form (II,V). The differences, observed with more distant atoms, may reflect small changes in geometry of the ring B found when comparing crystal structures ${ }^{31}$ of various 3 -ketones with chair or boat form of the ring $A$.

In the unsubstituted 3-ketones $I$ and $I V$ the population of the boat form could be calculated from the ${ }^{13} \mathrm{C}$ chemical shifts (which represent time-averaged shifts of both conformers) using the relationship (1)

$$
\begin{equation*}
\%(\text { boat })=100(\delta-\delta(\mathrm{c})) /(\delta(\mathrm{b})-\delta(\mathrm{c})), \tag{1}
\end{equation*}
$$

where $\delta$ is the observed shift of the given carbon atom in the ketone $I$ or $I V$ and $\delta(\mathrm{c})$ and $)(b)$ are the respective shifts of the same atom in the chair and boat form of these
ketones. The values of $\delta(\mathrm{c})$ and $\delta(\mathrm{b})$ can be approximated by the shifts found for the model compounds, i.e. in the chair $2 \alpha$-methyl ketones $I I$ and $V$ and the boat $2 \beta$-methyl ketones III and VI, under the assumption that the methyl group on C-2 influences neither the shift of the given carbon atom nor the geometry of the corresponding conformer (for a detailed discussion of assumptions and possible errors in using these models see refs ${ }^{2,3}$ ). Whereas the effect of the $2 \alpha$-methyl on the individual carbon atoms in the chair form may be taken from the $3 \beta$-hydroxy derivatives $X-X I I I$, no suitable compounds are available for estimation of the effect of the $2 \beta$-methyl in the boat form. Therefore, we limited our selection of carbon atoms, suitable for determination of boat population in ketones $I$ and $I V$, to atoms for which the chemical shifts in $2 \alpha$ - and $2 \beta$-methyl ketones differ sufficiently and are little affected by the substituent effect of the $2 \alpha$-methyl group (Fig. 1). The results are summarized in Table II.

The calculated populations of the boat forms differ somewhat according to the carbon atom used, depending apparently on how for a given atom the above-discussed conditions are satisfied. Since these systematic errors for individual carbon atoms are not known, no atom can be preferred. All the obtained boat populations in ketones $I$ and $I V$ range from $32 \%$ to $50 \%$; within similar limits are also values obtained by other physical methods such as vicinal coupling constants $J(\mathrm{H}, \mathrm{H})$ in ${ }^{1} \mathrm{H}$ NMR spectra ${ }^{2}(30-40 \%)$, dipole moments ${ }^{3}$. $(39-45 \%)$ or CD spectra ${ }^{3}$ ( $27-32 \%$ ).

As seen from Table II, the largest differences between both conformers occur in the chemical shifts of atoms C-4, C-5, C-23 and C-24 and therefore these shifts

Table II
${ }^{13} \mathrm{C}$ Chemical shift differences $(\Delta \delta)$ between $2 \beta-(I I I, V I)$ and $2 \alpha$-methyl-3-oxo derivatives (II and $V$ ), respectively, and estimated populations of boat form (\% boat) in 3-oxo derivatives $I$ and IV

| Parameter | C-4 | C-5 | C-6 | C-7 | C-11 | C-23 | C-24 | C-26 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ketone $I$ |  |  |  |  |  |  |  |  |
| $\Delta \delta^{\boldsymbol{a}}$ | $-1.72$ | -4.91 | 0.80 | $-1.06$ | 0.82 | $4 \cdot 22$ | -2.27 | -0.76 |
| \% boat | 49 | 50 | 41 | 49 | 35 | 36 | 36 | 45 |
| ketone $1 V$ |  |  |  |  |  |  |  |  |
| $\Delta \delta^{\text {b }}$ | $-1.69$ | -4.91 | 0.76 | $-1.05$ | 0.90 | $4 \cdot 19$ | $-2 \cdot 31$ | $-0.73$ |
| \% boat | 48 | 47 | 38 | 46 | 34 | 33 | 32 | 38 |

[^0]may also be useful in conformational studies of other 3-oxotriterpenoids which are structurally different from ketones $I$ and $I V$ in positions sufficiently remote from the ring A. Thus, for example, the values of ${ }^{13} \mathrm{C}$-shifts of the mentioned atoms, published for 20-hydroxy-3-lupanone ${ }^{22}(X I X)$, 20(29)-lupen-3-one ${ }^{18,21-23}(X X)$, betulonic $\operatorname{acid}^{21}(X X I)$ and moretenone ${ }^{23}(X X I I)$ agree well ( $\pm 0 \cdot 1 \mathrm{ppm}$ ) with those found for ketones $I, I V$ and $X V I$ (Table I). This accord indicates that in all the mentioned ketones the population of the boat form in the chair-boat equilibrium is approximately the same.

Also in the series of 1-oxo derivatives the carbon atoms of rings $A$ and $B$ in the $2 \beta$-methyl ketone $I X$ (boat) have different chemical shifts than in the $2 \alpha$-methyl ketone VIII (chair). The most marked difference appears for C-5 which exhibits an upfield shift ( -8.76 ppm ) in $I X$ compared with VIII, similarly to the 2-methyl-3--oxo derivatives. The shifts of most carbon atoms in the unsubstituted 1 -ketone VII resemble the values for the $2 \alpha$-methyl ketone VIII rather than for the $2 \beta$-isomer $I X$, in accord with the fact that in ketone VII the chair form highly predominates ${ }^{2,6}$. The boat form content in the ketone VII was determined in the similar manner as in the 3-oxo derivatives (using the relationship (1) and 2-methyl ketones VIII and IX as models) and the results are summarized in Table III. Most of the values range from $8 \%$ to $22 \%$ of boat, in agreement with the value of $9 \%$, derived ${ }^{6}$ from isomerization of 1-oxo derivatives substituted in position 2 with bromine or a methyl group. The only value $(31 \%)$ outside the given limits was obtained using the parameters for C-4; in this case probably the effect of the 2-methyl group on the chemical shift of C-4 is not negligible in one conformer or another.

A comparison of spectra of the 2-methyl derivative $X V$ and the unsubstituted compound $X I V$ shows that the differences in chemical shifts of atoms C-4 to C-7, C-11 to C-13 and C-15 are similar to those found between the $2 \beta$-methyl-3-ketones (boat) and their $2 \alpha$-isomers (chair). Again the high upfield shift of C-5 in the 2-methyl derivative $X V$ compared with that in $X I V$ is significant. It is thus very probable that

Table IlI
${ }^{13} \mathrm{C}$ Chemical shift differences $(\Delta \delta)$ between $2 \beta$ - and $2 \alpha$-methyl ketones $I X$ and $V I I I$, respectively, and estimated populations of boat form (\% boat) in 1-oxo derivative VII

| Parameter | $C-4$ | $C-5$ | $C-8$ | $C-10$ | $C-11$ | $C-23$ | $C-24$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | -2.06 | -8.76 | 0.85 | -3.49 | -1.07 | -0.99 | 3.57 |
| $\Delta \dot{o}^{a}$ | 31 | 21 | 9 | 18 | 8 | 22 | 9 |

[^1]Collect. Czech. Chem. Commun. (Vol. 54) (1989)
in $X V$ the ring A exists preferably in the boat form. Surprisingly, however, the C-25 signal in compound $X V$ is shifted considerably downfield $(\delta 24.78)$ which has no analogy in other compounds compared.

We may conclude, that the ${ }^{13} \mathrm{C}$ NMR shifts can be utilized for estimating the chair-boat population in the ring $A$ of triterpenoid ketones and give results comparable with those obtained by other physical methods.

## REFERENCES

1. Klinot J., Podlaha J., Podlahová J., Hilgard S., Klinotová E.: Collect. Czech. Chem. Commun. 54, 737 (1989).
2. Klinot J., Buděšinský M., Klinotová E., Vystř̌il A.: Collect. Czech. Chem. Commun. 51, 593 (1986).
3. Klinot J., V̌̌etě̌ka V., Klinotová E., Vystrčil A.: Collect. Czech. Chem. Commun. 51, 611 (1986).
4. Tsuda Y., Kiuchi F.: Chem. Pharm. Bull. 32, 4806 (1984).
5. Tsuda Y., Yamashita T., Sano T.: Chem. Pharm. Bull. 32, 4820 (1984).
6. Klinot J., Světlý J., Klinotová E., Buděsínský M., Vystrčil A.: Collect. Czech. Chem. Commun. 51, 2869 (1986).
7. Wilson N. K., Stothers J. B.: Top. Stereochem. 8, 1 (1974).
8. Schulze H., Pieroh K.: Ber. Dtsch. Chem. Ges. 55, 2332 (1922).
9. Klinot J., Světlý J., Kudláčková D., Budě̌ínský M., Vystř̌il A.: Collect. Czech. Chem. Commun. 44, 211 (1979).
10, Klinot J., Světlý J., Klinotová E., Vystř̌il A.: Collect. Czech. Chem. Commun. 50, 2918 (1985).
10. Huneck S.: Chem. Ber. 98, 2291 (1965).
11. Ruzicka L., Heineman S. D.: Helv. Chim. Acta 23, 1512 (1940).
12. Lehn J.-M., Ourisson G.: Bull. Soc. Chim. Fr. 1962, 1133.
13. LeCocq C., Lallemand J.-Y.: J. Chem. Soc., Chem. Commun. 1981, 150.
14. Klinot J., Buděšínský M., Hilgard S., Vystrčil A.: Collect. Czech. Chem. Commun. 39, 3741 (1974).
15. Wazeer M. I. M.: Magn. Reson. Chem. 23, 250 (1985).
16. Ammann W., Richarz R., Wirthlin T., Wendisch D.: Org. Magn. Reson. 20, 260 (1982).
17. Wenkert E., Baddeley G. V., Burfitt I. R., Moreno L. N.: Org. Magn. Reson. 11, 337 (1978).
18. Ayer W. A., Flanagan R. J., Reffstrup T.: Tetrahedron 40, 2069 (1984).
19. Sholichin M., Yamasaki K. Y., Kasai R., Tanaka O.: Chem. Pharm. Bull. 28, 1006 (1980).
20. Carpenter R. C., Sotheeswaran S., Sultanbawa M. U. S., Ternai B.: Org. Magn. Reson. 14, 462 (1980).
21. Dantanarayana A. P., Kumar N. S., Muthukuda P. M., Wazeer M. I. M.: Phytochemistry 21, 2065 (1982).
22. McLean S., Perpick-Dumont M., Reynolds W. F., Jac bs H., Lachmansing S. S.: Can. J. Chem. 65, 2519 (1987).
23. Klinot J., Liška J., Forgá̌ová A., Buděšínský M., Protiva J., Hilgard S., Vystř̌il A.: Collect. Czech. Chem. Commun. 54, 413 (1989).
24. Sejbal J.: Thesis. Charles University, Prague 1986.
25. Yonemoto T.: J. Magn. Reson. 12, 93 (1973).
26. Iida T., Kikuchi M., Ishikawa T., Tamura T., Matsumoto T.: Org. Magn. Reson. 19, 228 (1982).
27. Iida T., Tamura T., Matsumoto T.: Magn. Reson. Chem. 25, 558 (1987).
28. Marat K., Templeton J. F., Gupta R. K., Kumar V. P. S.: Magn. Reson. Chem. 25, 730 (1987).
29. Blunt J. W., Stothers J. B.: Org. Magn. Reson. 9, 439 (1977).
30. Klinot J., Podlaha J., Podlahová J., Malý K., Petríǐek V.: Collect. Czech. Chem. Commun. 54, 725 (1989).

Translated by M. Tichý.


[^0]:    ${ }^{a} \Delta \delta=\delta(I I I)-\delta(I I) ;{ }^{b} \Delta \delta=\delta(V I)-\delta(V)$.

[^1]:    ${ }^{a} \Delta \delta=\delta(I X)-\delta(V I I I)$.

